

CONSORTIUM FOR IT SOFTWARE QUALITY

Software Quality Measurement

Dr. Bill Curtis
Director, CISQ
www.it-cisq.org

THE ECOSYSTEM

- Application quality metrics
- Method for automated measurement
 - Technical certification

- Raise international awareness of the critical challenge of IT software quality
- Develop standard, automatable measures and anti-patterns for evaluating IT software quality
- Promote global acceptance of the standard in acquiring IT software and services
- Develop an infrastructure of authorized assessors and products using the standard

PARTICIPANTS

Frankfurt, Germany	Arlington, Virginia, USA
Amadeus	AXA
AXA	Benchmark Consulting
BNP Paribas	Booz Allen Hamilton
Capgemini	CAST
CAST	Capers Jones Consulting
CIGREF	David Consulting Group
Daimler	Dept. of Health & Human Services
Deutsche Bundesbank	Dept. of Homeland Security
DNV-ITGS	Fannie Mae
First Data	FedEx
France TelecomOrange	General Motors
Fraunhofer IESE	IBM
Intellinova	McKesson
Itestra	Morgan Stanley
Johannes Kepler University	U.S. Air Force
Kugler Maag	University of Memphis
Siemens	Tata Consultancy Services
SIGS Datacom	
Société Générale	This column includes organizations
T-Systems	whose delegates were delayed or
Technical University Munich	forced to cancel because of weather

"I THINK YOU SHOULD BE MODE EXPLICIT HERE IN STEP TWO."

STANDARDS INFRASTRUCTURE

Technical Working Groups

Size

Develop a definition for automating Function Points

Maintainability

Measure elements affecting maintenance cost, effort, & time

Reliability & Performance

Measure elements affecting availability and responsiveness

Security

Measure elements affecting vulnerability to attack and loss

Best Practices for Metrics Use

Define methods for using code measures internally and externally

CERTIFICATIONS

	Purpose	Options
Developers	Certify that developers understand how to develop software possessing desirable quality attributes	OMG offers certifications for developers on many of their existing standards
Appraisers	Certify that appraisers are capable of using the standards effectively in providing professional diagnostic services	SEI has developed licensing services for appraisers in areas such as CMMI
Tools	Certify that tools which implement the defined measures and antipatterns provide accurate results	Proven difficult in the past, but options will be explored

Software Quality is Contextual

Drivers of business disruption risk and cost thrive at the interface between technologies, beyond siloed skill sets and expertise

analyzer

Software Quality is Structural

Technologies

Layer

Technologies

Business Risk & **Productivity** Vendor Quality Compliance Security **Impact Benchmarking Analysis** Measurement **Quality Gate Analysis** Layer **Application Analysis Engine** Quality Quantity **Application** Work Effort Intelligence **Health Factors Risk Drivers Cost Drivers Estimation** Layer **Architecture Best Practices** Complexity Checker **Calculators** Monitor Inference **Function Point** Quantification Risk **Third Party Engine** Identification Calculator Layer **Solutions Rules From Industry Rules from CAST Custom Rules** Research (700+) Research (200+) **Engine** Reconciliation **Application Structure Meta-Model** Layer **Database Packaged** 28 native + J2EE .NET Legacy / **Static Analysis** (SQL, (Oracle, SAP, universal

Mainframe

PL/SQL...)

SIEBEL..)

TEST

QUALITY EVALUATION

CAST Application Quality Metrics

Business Risk Exposure

- Performance
- ✓ Security
- Robustness

Cost Efficiency

- ✓ Transferability
- Changeability
- Maintainability (as defined by the SEI)

Methodology Maturity

- Documentation Compliance
- ✓ Standards Compliance

Application Size

- Size in KLOC
- Size in Back-Fired Function Points
- Size in CAST-Computed Function Points

Application Complexity

- Cyclomatic: Number of Objects of Low, Medium, High, and Very High Cyclomatic Complexity
- CAST Complexity: Number of Objects of Low, Medium, High, and Very High CAST Complexity

Structural Integrity

- Number of Passed Checks
- Number of Failed Checks
- Number of Critical Violations

Reduced Development and Maintenance Costs

CUSTOMER EXAMPLE

- Industry: Technology/Services
- Application Analyzed: Global, comprehensive tracking system of requests from the first receipt of the credit request to the final approval of the request by the appropriate parties.
- Technologies: J2EE, DB2

CAST Violations vs. Actual QA Defects

~10x Reduction in Cost of Fixing Defects

CUSTOMER EXAMPLE

- Industry: Financial Services
- Applications: 75 supported application/functions run by the Business Groups and Batch Operations
- Very complex technology environment, grown over last 15 years (J2EE, .NET, COBOL, Oracle, DB2)

AppMarQ Benchmark and Prioritization

- Maintenance Cost
- Development Cost
- Duration
- CustomerSatisfaction

Risk Drivers

- Robustness
- Performance
- Security

Cost Drivers

- Transferability
- Changeability
- CAST Complexity

- Driver is at or exceeds Median of World-Class
- Driver is between Median of Peer Group and World-Class
- Driver is below Peer Group Median

2010 AND BEYOND

CISQ will pursue member-driven objectives

- Determined by CISQ Executive Forum
- Consensus among CISQ members of problem to be addressed

Early requests for additional objectives:

- Defect and failure-related definitions
- Business value measures related to application quality
- Productivity/Size measurement

Use of Executive Forum for addressing industry issues

- Outsourcing quality SLAs
- Benchmarking
- Regulatory compliance

"If you don't know where you are, a map won't help"

- Watts H. Humphrey